

Seminarios de INTEC Viernes 29/11/19

" "Aplicaciones de Microscopia Electrónica de Transmisión (TEM)"

Sebastián Collins

PROYECTO 2015

I N

UNL

PROVINCIA DE SANTA FE Secretaría de Estado de Ciencia, Tecnología e Innovación

SEGUNDA CONVOCATORIA 2015 AGENCIA SANTAFESINA DE CIENCIA, TECNOLOGÍA E INNOVACIÓN. INSTRUMENTO EQUIPAMIENTO DE ALTA COMPLEJIDAD - APOYO A LA INVESTIGACIÓN CIENTÍFICA Y TRANSFERENCIA DE TECNOLOGÍAS AL SISTEMA SOCIO-PRODUCTIVO **PROYECTOS SELECCIONADOS PARA SU FINANCIAMIENTO**

	1		
	AC-2015-0006	Facultad de Ingeniería Química - UNIVERSIDAD NACIONAL DEL LITORAL (UNL)	
	AC-2015-0010	Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI). CONICET-UNR - CONICET Centro Científico Tecnológico - Rosario	"eran 550.000 dólares"
	AC-2015-0002	Instituto de Investigaciones en Catálisis y Petroquímica Ing. José Miguel Parera• (INCAPE). CONICET-UNL - CONICET Centro Científico Tecnológico - Santa Fe	
TEC	AC-2015-0007	Centro Regional Rafaela - INTI	

INTEC

JEOL Modelo JEM-2100 plus

Características:

- Cañón de electrones con filamento de hexaboruro de lantano (LaB6)
- Voltaje de aceleración máxima de 200 kV, con control de paso y voltaje mínimo de 20 kV
- Unidad de barrido (STEM)
- Lente objetiva que permite ultra alta resolución (0,19 nm)
- Detectores incorporados para obtener imágenes en los siguientes modos: campo brillante (HREM), campo oscuro anular de alto ángulo (HAADF-TEM), campo oscuro (DF) y campo brillante (BF) con resolución de 0,5 nm.

INTEC

MINISTERIO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN PRODUCTIVA 4 de Enero 3508 2º Piso 3000 - Santa Fe Tel. 342 – 4815715 www.santafe.gob.ar

MINISTERIO DE CIENCIA, TECNOLOGÍA E INNOVACION PRODUCTIVA AGENCIA SANTAFESINA DE CIENCIA, TECNOLOGÍA E INNOVACIÓN

ANEXO – Proyectos adjudicados convocatoria "Mejora de Servicios Tecnológicos 2017"

MST-	Ampliación de	\$ 2.700.000	CONICET	Instituto de	FUNDACION
2017-	las		Centro	Física del	INNOVA-T
	capacidades		Científico	Litoral (IFIS	

"eran 100.000 dólares"

INTEC

JEM-2100Plus

OXFORD AZTEC ENERGY TEM MICROANALYSIS SYSTEM

ΙΝΤΕΟ

SERVICIO DE MICROSCOPIA ELECTRONICA

COMITE de SEGUIMIENTO ACADEMICO

-Dra. Alicia Boix (INCAPE) -Coordinadora
-Dr. Sebastián Collins (INTEC)- Director Plan de Gestión
-Dr. Ricardo Vidal (IFIS)
-Dra Romina Ghirardi (INALI)

-Dra. Virginia Parachu (ICIVET)

GRUPO DE OPERACIÓN, ADMINISTRACIÓN Y MANTENIMIENTO

Operación: Ing. Fabio Fontanarrosa Administración. Lic. Diana Pedulli Mantenimiento: Héctor Ortiz

INTEC

JEOL 2100 Plus

Specifications

Configuration	Ultrahigh resolution ^{*1} (UHR)	High resolution ^{*1} (HR)	High specimen tilt ^{*1} (HT)	Cryo ^{*1} (CR)	High contrast ^{*1} (HC)
Resolution(nm)					
Point	^{0.194} nm	0.23	0.25	0.27	0.31
Lattice	0.14 nm	0.14	0.14	0.14	0.14
			·		·

*1 : Specify either configuration (UHR, HR, HT, CR or HC) when ordering the JEM-2100Plus.

- MODULO STEM
- Detectores BF, DF, HAADF
- 2 Portamuestras: single tilt y doble-tilt (Be para EDS)

UNL

٠

JEOL 2100 Plus

UNL

Resolución: La distancia más pequeña que se puede resolver.

Microscopia de Luz Visible

Criterio de Rayleigh

$$r = \frac{0.61\lambda}{\mu\sin\beta} = \frac{0.61\lambda}{NA\sim1} = 0.61\lambda$$

 $\begin{array}{l} r: \text{resolución} \\ \lambda: \text{longitud de onda} \\ \mu: \text{indice de refracción del medio} \\ \beta: \text{semi-ángulo de colección de las lentes} \\ NA: Apertura numérica \end{array}$

Luz visible : $\lambda_{r} = 550 \text{ nm} \text{ (verde)}$ $r \approx 300 \text{ nm}$ $300 \text{ nm} \approx 1000$ $\overleftarrow{5}$ ¿Cómo podemos mejorar la resolución?

Reduciendo λ

Por qué electrones?

IMPORTANTE:

INTE

No podemos construir un microscopio electrónico "perfecto":

La resolución es peor que la longitud de onda

 Efectos de la Fuente de electrones + Imperfecciones de las Lentes (Aberraciones) + Inestabilidades mecánicas 	Voltaje de Aceleración (kV) 100 200 400	λ (nm) 0,00370 0,00251 0,00164
FOL 2100Plus is the second s	1000 3000	0,19000 0,16000 0,14000

TEM

ΙΝΤΕΟ

Muestras para TEM

CONICET

UNL

TEM

STEM

HR-TEM

Imagen reticular de

 $K_{0.05}WO_3$

Diffraction Patterns

• Nd₂Fe₁₄B : Different incident beam directions

STEM

Distribución de tamaños de partículas

MODO STEM-HAADF

STEM

5. MAPAS COMPOSICIONALES

J.C. Hernandez-Garrido et al. Journal of Materials Chemistry A 1(11), 2013, 3645-3651

Análisis nano-estructural

 $\mathrm{Ce}_{0.80}\mathrm{Ga}_{0.20}\mathrm{O}_{\mathrm{x}}$

Bright field, Dark field and High Resolution images

• Super lattice reflections

STEM + EDS = Mapeo químico

Cortesía: Prof. Calvino (Cádiz, España)

Nanomateriales

Silica Source

Nanomateriales

Nanocapsulas poliméricas con incorporación de nanopartículas magnéticas (MNP)

Tinción positiva con OsO₄

Nanopartículas Metálicas

Imágenes TEM de nanoplatos de Ag

Los colores de las nanopartículas metálicas dispersas en un medio dieléctrico están dominados por la absorción plasmónica de superficie localizada, la oscilación colectiva de los electrones en la interfase metal-dieléctrica.

TP 13

Tomografía electrónica

Ver Video

Biología

Specimen: Rat hippocampus

Endoplasmatic reticulum

Biología

Nanopartículas en una bacteria

Tomografía

Materials Science/Life Science Interface: Magneto-tactic Bacteria

Magnetite crystals in bacteria strain MV-1, in this preparation the cell is preserved surrounding the crystals.

The quality of the reconstruction allows both the crystallites (yellow) and the exterior cell wall (green) to be to be resolved

Biología

Ca₃(PO₄)₂ / Calcium phosphate

 Crohn's disease is a chronic and debilitating inflammatory condition of the ileum and colon that afflicts a growing proportion of the Western population.

The precise cause is unclear but dietary, lifestyle, genetic and pathogen related factors have all been proposed to be important.

Biología

CATALISIS

Catálisis Heterogénea

Reacciones en superficies

Ejemplo de convertidor catalítico

CATALISIS

CATALISIS EN NANOPARTICULAS

Imágenes HREM representativas en visión perfil de nanopartículas de Au presentes en el catalizador Au/CTZ-MO.

Modelo estructural de una partícula de Au soportada en una superficie de tipo (111) de Ce-Zr en proyección [110].

CATALISIS EN NANOPARTICULAS

Imagen HREM de una nanopartícula de Au truncada por un plano superior al plano mitad (a), de una nanopartícula de Au con un crecimiento irregular (b). Modelos representativos de nanopartículas de Au truncados por un plano superior al plano mitad (c). Modelos representativos de nanopartículas de Au truncadas por la mitad de diferentes tamaños. Los números que se muestran en las partículas indican los números de coordinación.

Técnicas de Microscopia en Nanociencias

Nanopartículas Metálicas Soportadas en Catalizadores

Tomografía

NP de Co

ΙΝΤΕΟ

STEM-HAADF + EDS

Nanopartículas con Morfologia Controlada

ΙΝΤΕΟ

ΙΝΤΕΟ

